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Motivating Example

Nonparameteric regresssion offers great promises in robotic applications

Learned policies are unsafe in real world applications [1]

•Constrained environments to avoid damages of hardware

•No human-robot interaction due to risk of injuries

START

GOAL

Quantification of uncertainty in data-driven models es-
sential for safety-critical applications
⇒ Robust control for rigorous safety certificates

How can the learning error be bounded based on the model uncertainty?
How are formal safety guarantees provided for policies based on uncertain models?

Gaussian Process Regression

•Bayesian nonparametric modeling as ”distribution over functions”

fGP(x) ∼ GP(0, k(x,x′))

•Based on training data D =
{
x(i), y(i) = f

(
x(i)
)
+ ε(i)

}N
i=1

with Gaussian noise

ε(i) ∼ N (0, σ2n), it provides mean and variance

νN(x) := E [fGP(x)|x,D] = kᵀ(K + σ2nIN)
−1y)

σ2N(x) := V [fGP(x)|x,D] = k(x,x)− kᵀ(K + σ2nIN)
−1k
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Problem: Difficult quantification of uniform error bounds using RKHS theory [2, 3]

Probabilistic Uniform Error Bound

•Assumption: function f (x) is a sample from a GP with Lipschitz constant Lf

• Lipschitz continuous posterior mean νN(·) and standard deviation σN(·) with

‖νN(x)− νN(x′)‖ ≤ Lν‖x− x′‖ ‖σN(x)− σN(x′)‖ ≤ ωσ(‖x− x′‖)

Theorem

The learning error is probabilistically bounded by

P
(
|f (x)−νN(x)|≤

√
β(τ )σN(x)+(Lν+Lf)τ+

√
β(τ )ωσ(τ ), ∀x ∈ X

)
≥1−δ

with β(τ ) = 2 log((1+ r
τ )
dδ−1) on the compact set X ⊂ Rd with maximal extension

r for every τ ∈ R+, δ ∈ (0, 1).

Probabilistic Lipschitz Constants

•Kernel with continuous partial derivatives up to the fourth order

•Partial derivative kernels

k∂i(x,x′) =
∂2

∂xi∂x′i
k(x,x′) ∀i = 1, . . . , d

• Lipschitz constants L∂ik of partial derivative kernel

Theorem

The constant

Lf=

∥∥∥∥∥∥∥∥∥∥∥



√
2 log

(
2d
δL

)
max
x∈X

√
k∂1(x,x)+12

√
6dmax

{
max
x∈X

√
k∂1(x,x),

√
rL∂1k

}
...√

2 log
(
2d
δL

)
max
x∈X

√
k∂d(x,x)+12

√
6dmax

{
max
x∈X

√
k∂d(x,x),

√
rL∂dk

}


∥∥∥∥∥∥∥∥∥∥∥
is a Lipschitz constant of f (·) on X with probability of at least 1− δL.

Safe Control of Unknown Dynamical Systems

•Nonlinear control affine dynamical system

ẋ1 = x2, ẋ2 = f (x) + u,

•Goal: track reference xd(t) with x1 such that error e = x− [xd ẋd]
T vanishes

•Define filtered state r = λe1 + e2, λ > 0

•Use feedback linearizing policy

u = π(x) = −f̂ (x) + ν

with control gain kc > 0 in linear controller

ν = ẍd − kcr − λe2

Theorem

The feedback linearizing controller with f̂ (·) = νN(·) guarantees with probability 1− δ
that the tracking error e converges to

B =

{
x ∈ X

∣∣∣∣∣‖e‖ ≤
√
β(τ )σN(x) +(Lν+Lf)τ+

√
β(τ )ωσ(τ )

kc
√
λ2 + 1

}
.

Numerical Evaluation on a Robotic Manipulator
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