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Motivating Example Probabilistic Uniform Error Bound Safe Control of Unknown Dynamical Systems

Nonparameteric regresssion offers great promises in robotic applications e Assumption: function f(z) is a sample from a GP with Lipschitz constant L e Nonlinear control affine dynamical system

.. _ o e Lipschitz continuous posterior mean vy(-) and standard deviation oy(-) with
Learned policies are unsafe in real world applications [1]

- / < [ ! . / < !
e Constrained environments to avoid damages of hardware lvn(@) —vn(@)]| < Ljlz — 2| lov(x) — on(x)]] < wolljx — )

e No human-robot interaction due to risk of injuries

T1 = T2, Ty = f(x) +u,

o Goal: track reference x,4(t) with x| such that error e = & — [x4 24]" vanishes

e Define filtered state »r = A\ey + €9, A > 0

_ _ — e Use feedback linearizing policy
The learning error is probabilistically bounded by X
Quantification of uncertainty in data-driven models es- u=m(r)=—f(z)+v

sential for safety-critical applications (]f( x)| </ B(T)on(@®)+(Ly+ LT+ B(T)we(T), V& € X) >1-—4 with control gain k. > 0 in linear controller

= Robust control for rigorous safety certificates v =2x4— ko — Aey

with 5(7) = 2log((1+Z£)?6~") on the compact set X C R” with maximal extension

r for every T € Ry, 6 € (0,1).

The feedback linearizing controller with f(-) = vx(-) guarantees with probability 1 — §

that the tracking error e converges to
(

Probabilistic Lipschitz Constants B-dxeX||e| < /3(7)%(%)+(L\;+Lf)7+\/5(7)wa(7)
B kv A2+ 1

How can the learning error be bounded based on the model uncertainty?
How are formal safety guarantees provided for policies based on uncertain models?

Gaussian Process Regression

\

e Kernel with continuous partial derivatives up to the fourth order

e Bayesian nonparametric modeling as "distribution over functions”
for(x) ~ GP(0, k(z, z'))

e Based on training data D = {w(i),y@ = f (az(@) +e(i>}§il with Gaussian noise
) ~ N(0,02), it provides mean and variance
vn(x) = E|[fgp(x)|x, D] = kT(K + 0,Iy) " 'y)
on(@) = V[fgp(z)|z, D] = k(z,z) — kT(K + 0,Iy) 'k

e Partial derivative kernels
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e Lipschitz constants Lgi of partial derivative kernel

The constant

k(x, ') Vi=1,...,d
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is a Lipschitz constant of f(-) on X with probability of at least 1 — d7.. 2 —Lo =1 =095 g 0.5 1 15

Problem: Difficult quantification of uniform error bounds using RKHS theory [2, 3]
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